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• Numerical methods (e.g., finite differences) provide a 

way to solve the wave equation when analytical solutions 

are not possible

• The general idea is to divide a continuous system into a 

(in this case, evenly distributed) mesh of grid points

Numerical methods
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• The grid points represent the positions in space where 

the solution to the wave equation is obtained

• The continuous derivatives in the wave equation, e.g.,

and        are then replaced with discrete 

approximations, e.g., finite differences

• We are going to solve the 1D wave equation

• First with finite differences, and then with the 

pseudospectral time domain method used in k-Wave

Finite difference schemes 
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• Consider the calculation of       at the grid point

• This is called a first-order accurate forward-difference

scheme

Finite difference schemes 
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• Other approximations are also possible

• Higher order schemes using more grid points also exist

Finite difference schemes 

forward difference

backward difference

central difference
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• Similarly for second order derivatives

• This is a second-order accurate central difference 

scheme

• The same thing holds for time derivatives

• We’re now ready to solve the wave equation!  
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Finite difference schemes 
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• We will use the notation      , where    is the spatial index, 

and     is the time index (this becomes       in 2D)

• Replacing derivatives with finite differences

• We can use this to calculate the evolution of the 

pressure field over time

Solving the wave equation
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• The new pressure value at each grid point depends on 

the previous two values in time, and the previous value 

either side in space

Finite difference stencil

finite difference stencil

space

ti
m

e
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Spatial derivative

• If p is stored as a vector, we can calculate the spatial 

derivative at every point in a vectorised way

+

-2 ×

+
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Spatial derivative

• If p is stored as a vector, we can calculate the spatial 

derivative at every point in a vectorised way

• In MATLAB code

-2*p(2:end-1) + p(3:end) + p(1:end-2)

+

-2 ×

+
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Complete loop

for n = 1 to Nt

(1) update

(2) copy                   and

end

+

-2 ×
+

=
2 ×

-

+
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MATLAB code – FDTD
% define literals (hard coded numbers)

Nx = 100;              % number of grid points

dx  = 1e-3;             % grid point spacing (m)

c0  = 1500;             % sound speed (m/s)

Nt = 50;               % number of time steps

CFL = 0.5;              % Courant–Friedrichs–Lewy number

% set the time step based on the CFL number

dt = CFL * dx / c0;     % size of time step (s)

% set the initial pressure to be a Gaussian

p_n = exp(-( (1:Nx) - Nx/2).^2 / (2 * (Nx/30)^2));

% set pressure at time step (n – 1) to be equal to (n)

p_nm1 = p_n;

% set pressure at time step (n + 1) to be zero

p_np1 = zeros(size(p_n));

% calculate pressure in a loop

for n = 1:Nt

% calculate the new value for the pressure at time step (n + 1)

p_np1(2:end-1) = 2*p_n(2:end-1) - p_nm1(2:end-1) + ...

(c0 * dt / dx)^2 * ( p_n(1:end-2) - 2*p_n(2:end-1) + p_n(3:end) );

% copy the value for the pressure at time step (n) to (n – 1)

p_nm1 = p_n;

% copy the value for the pressure at time step (n + 1) to (n)

p_n = p_np1;

end

time loop has just 

three lines of code!
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Convergence

• The finite difference scheme uses an approximation to 

the derivatives in the wave equation, e.g., 

• How do we know when this is accurate?

• We can gradually decrease        and       until the 

simulation result converges (doesn’t change any more) 

• This works because 

(i.e., the scheme is consistent)
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Convergence Example

source large element

receiverscatterer

domain

absorbing 

layer

4 x higher samplingLow resolution simulation 8 x higher sampling



• Many numerical methods have a restriction on the size 

of the time step before it becomes unstable

• For the finite difference scheme used here, in 1D the 

limit is

• In 1D, this non-dimensional ratio is sometimes called the 

Courant-Friedrichs-Lewy (CFL) number, where

• We will make frequent use of this expression

Stability
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Example of instability in 1D
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wave_equation_1D_finite_differences_unstable.m



Lax equivalence theorem

• When given a numerical model, it is often hard to prove 

convergence by looking at the equations, however:

• This is the Lax equivalence theorem and links three concepts

– Consistency: the numerical equations mathematically reduce to the 

continuous equations in the limit 

– Stability: the error in the numerical solution doesn’t grow without bound

– Convergence: the numerical solution approaches the correct answer 

as         and        are reduced 

A consistent and stable numerical scheme 

is always convergent
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Numerical dispersion

• In practice, we must use a finite       and 

• How can we can analyse the numerical errors introduced 

by the discretisation?

• You can consider the errors in two ways:

1. Finding a slightly incorrect solution to the correct 

equation

2. Finding the correct solution to a slightly incorrect 

equation
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• Consider solution to the 1D wave equation using 

second-order accurate central differences

• Because of the truncation error in the FD approximation, 

the equation solved exactly is actually

• Results in a frequency dependent sound speed
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Numerical dispersion – FDTD
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error from time discretisation

error from space discretisation



• Propagation of a broadband pulse                   with 10 

grid points per wavelength

• Wave changes shape because of numerical dispersion

Numerical dispersion

Exact Solution Finite Difference Solution
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• Error in sound speed due to spatial FD discretisation:

• Errors accumulate, so larger grids need more PPW 
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Numerical dispersion
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• Consider the calculation of      at the grid point 
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How can we avoid numerical dispersion?

• Consider the calculation of      at the grid point 

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

23



How can we avoid numerical dispersion?

• Consider the calculation of      at the grid point 
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How can we avoid numerical dispersion?

• Consider the calculation of      at the grid point 

• Eliminates dispersion from spatial gradient
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• Consider the Fourier transform pair

• The Fourier transform of a derivative is then
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Fourier collocation spectral method
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• Alternatively, express function as a sum of sinusoids

• Differentiate each sinusoid

• Using the Fourier transform to calculate the amplitudes
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Fourier collocation spectral method
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• Higher order derivatives are calculated in the same way

where 
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Fourier collocation spectral method
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• In the discrete case, the fast Fourier transform is used, 

and the wavenumbers are given by

• Note, in MATLAB (which uses FFTW), the wavenumbers 

or frequency components are ordered starting from 0!
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Fourier collocation spectral method
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• We will use the notation     , where     is the time index 

(all spatial positions are solved at once)

• Replacing derivatives

• We can use this to calculate the evolution of the 

pressure field over time

Solving the wave equation
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MATLAB code – PSTD
% set the initial pressure to be a Gaussian

p_n = exp(-( (1:Nx) - Nx/2).^2 / (2 * (Nx/30)^2));

% set pressure at time step (n – 1) to be equal to (n)

p_nm1 = p_n;

% set pressure at time step (n + 1) to be zero

p_np1 = zeros(size(p_n));

% define the set of wavenumbers

kx = (-pi/dx):2*pi/(dx*Nx):(pi/dx - 2*pi/(dx*Nx));

% shift the order of the wavenumbers (the FFT in MATLAB assumes the

% frequency axis starts at DC) 

kx = ifftshift(kx);

% calculate pressure in a loop

for n = 1:Nt

% calculate the new value for the pressure at time step (n + 1)

p_np1 = 2*p_n - p_nm1 + dt^2 * c0.^2 * real(ifft( -k.^2 .* fft(p_n)));

% copy the value for the pressure at time step (n) to (n – 1)

p_nm1 = p_n;

% copy the value for the pressure at time step (n + 1) to (n)

p_n = p_np1;

end
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wave_equation_1D_pstd.m

spatial derivative 

calculation



• 1D wave equation solved using the pseudospectral time 

domain method (PSTD)

• Because of the truncation error in the FD approximation, 

the equation solved exactly is actually

• Error from space discretization is eliminated! 
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Numerical dispersion – PSTD 
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• The k-space pseudospectral method applies additional 

correction                             in the spatial frequency 

domain to reduce dispersion from temporal gradient

• Example: 1D homogeneous linear wave equation 

• k-space solution is given by

• Solution is exact and unconditionally stable
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k-space pseudospectral method
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k-space operator



MATLAB code – k-space PSTD
% define the set of wavenumbers

kx = (-pi/dx):2*pi/(dx*Nx):(pi/dx - 2*pi/(dx*Nx));

% shift the order of the wavenumbers (the FFT in MATLAB assumes the

% frequency axis starts at DC) 

kx = ifftshift(kx);

% compute the k-space operator

k = abs(kx);

kappa = sinc(c0 * k * dt / 2);

% calculate pressure in a loop

for n = 1:Nt

% calculate the new value for the pressure at time step (n + 1)

p_np1 = 2*p_n - p_nm1 ...

+ dt^2 * c0.^2 * real(ifft( -kappa.^2 .* k.^2 .* fft(p_n)));

% copy the value for the pressure at time step (n) to (n – 1)

p_nm1 = p_n;

% copy the value for the pressure at time step (n + 1) to (n)

p_n = p_np1;

end
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wave_equation_1D_kspace.m

k-space correction

NOTE: MATLAB sinc

function in the signal 

processing toolbox has a 

non-standard definition
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• Propagation of a broadband pulse
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Numerical dispersion comparison
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Numerical dispersion comparison

• Propagation of a pulse       defined by                     in a 

linear, lossless medium using 20 PPW

Correction for phase error

in spatial derivative

Correction for phase error

In temporal derivative

Errors accumulate, so larger 

domains need more PPW
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Numerical dispersion comparison

• Propagation of a pulse       defined by                     in a 

nonlinear, absorbing medium using 20 PPW

Correction for phase error

In temporal derivative
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• Same principle can be applied to solve coupled first-

order acoustic equations
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First-order equations
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• The pressure and velocity are calculated at alternating 

(staggered) time points

• Convention is to also use staggered spatial points – this 

significantly improves accuracy for heterogeneous media
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Grid staggering
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• Staggering can be applied using the shift property of the 

Fourier transform

• The term            applied in Fourier space shifts the result 

by   

40

Grid staggering
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• Derivative, k-space correction, and shift operators are all 

applied in the spatial frequency domain
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First-order equations on staggered grid
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wave_equation_1D_kspace_first_order.m
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• The FFT represents the pressure field as a sum of sines 

and cosines

• Therefore it implicitly assumes the sequence is part of a 

periodic sequence

• This leads to ‘wrapping’ in propagation models, which 

can be understood as a periodically repeated sound field
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Perfectly matched layer
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wave_equation_1D_kspace_first_order_wrapping.m



• An infinite domain can be approximated by using a 

perfectly matched layer

• An absorption term is added to the equations, where the 

absorption is only non-zero within a boundary layer

• In 2D and 3D, this requires splitting the density field 
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Perfectly matched layer
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• Equations are transformed by multiplying by       and 

rearranging

• This allows higher absorption values to be used while 

retaining stability
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Perfectly matched layer
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• Discrete equations are then given by
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Perfectly matched layer
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• Absorption profile within the PML is graded to avoid 

reflections
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Perfectly matched layer
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wave_equation_1D_kspace_first_order_pml.m



• We have now covered all of numerical details used in k-

Wave for a homogeneous medium in 1D!

• Simulations in 2D and 3D are very similar

• k-Wave also accounts for

– Absorption following a frequency power law

– Nonlinear wave propagation

– Heterogeneous material properties (sound speed, density, 

acoustic absorption coefficient, nonlinearity parameter)

• Similar principles apply for the elastic wave model and 

the heat diffusion model in k-Wave
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Summary

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox


