
Biomedical Ultrasound Group (BUG)

Department of Medical Physics and Biomedical Engineering

University College London

k-Wave short course – Part 3

Introduction to k-Wave

Bradley Treeby and Ben Cox

k-Wave toolbox

• Open-source acoustics toolbox written in MATLAB / C++

• Time domain modelling in heterogeneous media

• Two design goals:

– Models are computationally efficient

– Models are very easy to use

• Brief history:

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

2

- 2009: First release for photoacoustics

- 2010: Linear ultrasound simulation

- 2011: Nonlinear ultrasound simulation

- 2012: Native C++ code

- 2013: MPI code optimised for clusters

- 2014: Elastic simulation

- 2015: Native GPU code

- 2016: Multi-GPU code

- 2017: Thermal code

• Download toolbox from www.k-wave.org/download.php

• Unzip, and move the k-Wave folder somewhere useful

• Add the root k-Wave folder to the MATLAB path

3

Getting started with k-Wave

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

1

2

3

• Download toolbox from www.k-wave.org/download.php

• Unzip, and move the k-Wave folder somewhere useful

• Add the root k-Wave folder to the MATLAB path

• Open the help browser and select k-Wave

4

Getting started with k-Wave

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

1

2

MATLAB help

• Many worked examples included as part of the toolbox

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

5

• Extensive manual covering formulation and usage

• Available from www.k-wave.org/documentation.php

6

User manual

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

• Active online user forum (> 2400 posts)

7

User forum (www.k-wave.org/forum)

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

Code architecture

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

8

sourcekgrid sensormedium

c / ρ

% create the computational grid

kgrid = kWaveGrid(Nx, dx, Ny, dy);

% define the time array

kgrid.setTime(Nt, dt);

% define the compressional sound speed [m/s]

medium.sound_speed = 1500*ones(Nx, Ny);

medium.sound_speed(Nx/2:end, :) = 2000;

% define the mass density [kg/m^3]

medium.density = 1000;

% define the absorption coefficient [dB/(MHz^y cm)]

medium.alpha_coeff = 0.75;

medium.alpha_power = 1.5;

% define the source

source.u_mask = makeCircle(Nx, Ny, x_pos, y_pos, radius);

source.ux = toneBurst(sampling, freq, cycles);

% define a circular binary sensor mask

sensor.mask = makeCircle(Nx, Ny, Nx/2, Ny/2, sen_rad);

% run the simulation

sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

9

sourcekgrid sensormedium

c / ρ

% create the computational grid

kgrid = kWaveGrid(Nx, dx, Ny, dy);

% define the time array

kgrid.setTime(Nt, dt);

% define the compressional sound speed [m/s]

medium.sound_speed = 1500*ones(Nx, Ny);

medium.sound_speed(Nx/2:end, :) = 2000;

% define the mass density [kg/m^3]

medium.density = 1000;

% define the absorption coefficient [dB/(MHz^y cm)]

medium.alpha_coeff = 0.75;

medium.alpha_power = 1.5;

% define the source

source.u_mask = makeCircle(Nx, Ny, x_pos, y_pos, radius);

source.ux = toneBurst(sampling, freq, cycles);

% define a circular binary sensor mask

sensor.mask = makeCircle(Nx, Ny, Nx/2, Ny/2, sen_rad);

% run the simulation

sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

dx

Nx*dx

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

10

sourcekgrid sensormedium

c / ρ

% create the computational grid

kgrid = kWaveGrid(Nx, dx, Ny, dy);

% define the time array

kgrid.setTime(Nt, dt);

% define the compressional sound speed [m/s]

medium.sound_speed = 1500*ones(Nx, Ny);

medium.sound_speed(Nx/2:end, :) = 2000;

% define the mass density [kg/m^3]

medium.density = 1000;

% define the absorption coefficient [dB/(MHz^y cm)]

medium.alpha_coeff = 0.75;

medium.alpha_power = 1.5;

% define the source

source.u_mask = makeCircle(Nx, Ny, x_pos, y_pos, radius);

source.ux = toneBurst(sampling, freq, cycles);

% define a circular binary sensor mask

sensor.mask = makeCircle(Nx, Ny, Nx/2, Ny/2, sen_rad);

% run the simulation

sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

11

sourcekgrid sensormedium

c / ρ

% create the computational grid

kgrid = kWaveGrid(Nx, dx, Ny, dy);

% define the time array

kgrid.setTime(Nt, dt);

% define the compressional sound speed [m/s]

medium.sound_speed = 1500*ones(Nx, Ny);

medium.sound_speed(Nx/2:end, :) = 2000;

% define the mass density [kg/m^3]

medium.density = 1000;

% define the absorption coefficient [dB/(MHz^y cm)] and exponent

medium.alpha_coeff = 0.75;

medium.alpha_power = 1.5;

% define the source

source.u_mask = makeCircle(Nx, Ny, x_pos, y_pos, radius);

source.ux = toneBurst(sampling, freq, cycles);

% define a circular binary sensor mask

sensor.mask = makeCircle(Nx, Ny, Nx/2, Ny/2, sen_rad);

% run the simulation

sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

12

sourcekgrid sensormedium

c / ρ

% create the computational grid

kgrid = kWaveGrid(Nx, dx, Ny, dy);

% define the time array

kgrid.setTime(Nt, dt);

% define the compressional sound speed [m/s]

medium.sound_speed = 1500*ones(Nx, Ny);

medium.sound_speed(Nx/2:end, :) = 2000;

% define the mass density [kg/m^3]

medium.density = 1000;

% define the absorption coefficient [dB/(MHz^y cm)] and exponent

medium.alpha_coeff = 0.75;

medium.alpha_power = 1.5;

% define the source

source.u_mask = makeCircle(Nx, Ny, x_pos, y_pos, radius);

source.ux = toneBurst(sampling, freq, cycles);

% define a circular binary sensor mask

sensor.mask = makeCircle(Nx, Ny, Nx/2, Ny/2, sen_rad);

% run the simulation

sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

13

sourcekgrid sensormedium

c / ρ

% create the computational grid

kgrid = kWaveGrid(Nx, dx, Ny, dy);

% define the time array

kgrid.setTime(Nt, dt);

% define the compressional sound speed [m/s]

medium.sound_speed = 1500*ones(Nx, Ny);

medium.sound_speed(Nx/2:end, :) = 2000;

% define the mass density [kg/m^3]

medium.density = 1000;

% define the absorption coefficient [dB/(MHz^y cm)] and exponent

medium.alpha_coeff = 0.75;

medium.alpha_power = 1.5;

% define the source

source.u_mask = makeCircle(Nx, Ny, x_pos, y_pos, radius);

source.ux = toneBurst(sampling, freq, cycles);

% define a circular binary sensor mask

sensor.mask = makeCircle(Nx, Ny, Nx/2, Ny/2, sen_rad);

% run the simulation

sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

14

• The spatial and temporal grids typically define different

Nyquist frequencies

15

Spatial and temporal frequencies

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

dx

Nx*dx

• The maximum temporal frequency that can be

represented on the grid (called the maximum supported

frequency) is given by

• Frequencies higher than won’t be propagated

• This is typically smaller than the maximum temporal

frequency that can be represented in the source

16

Spatial and temporal frequencies

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

• All simulations performed on a regular Cartesian grid

• Grid is specified by the number of grid points in each

dimension, and the grid spacing

• Rule of thumb:

– Start with at least 3 points per wavelength (PPW) at the
highest frequency of interest, and then calculate dx

– Calculate Nx based on the physical domain size

17

Defining the grid

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

% compute dx and Nx based on x_size and f_max

ppw = 3;

dx = c0_min / (ppw * f_max);

Nx = round(x_size / dx);

• Grid is specified by creating an object of the kWaveGrid

class

• Can be given any name, typically we use kgrid

• The grid object contains:

– the wavenumber grids expressed as vectors or plaid
matrices, e.g., kx_vec and kx

– the spatial grid coordinates expressed as vectors or plaid
matrices, e.g., x_vec and x

18

Defining the grid

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

% create k-Wave grid object

kgrid = kWaveGrid(Nx, dx, Ny, dy);

• Simulations based heavily on FFT, so will be fastest

when grid sizes (including PML) have small prime factors

19

Defining the grid

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

factor of two

performance penalty

• Simulations based heavily on FFT, so will be fastest

when grid sizes (including PML) have small prime factors

• Can use the function checkFactors

20

Defining the grid

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

>> checkFactors(200, 300)

Numbers with a maximum prime factor of 2

256

Numbers with a maximum prime factor of 3

216 243 288

Numbers with a maximum prime factor of 5

200 225 240 250 270 300

Numbers with a maximum prime factor of 7

210 224 245 252 280 294

Numbers to avoid (prime numbers)

211 223 227 229 233 239 241 251 257 263 269

271 277 281 283 293

• The size and number of time steps are controlled by Nt

and dt, which are set to 'auto' by default

• This sets

dt = CFL * dx_min / c0_max

Nt = d / (c0_min * dt)

• where the default CFL is 0.3

• Note, this definition of the CFL is used in all dimensions

21

Defining the time step

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

d

• There are two methods to specify Nt and dt, setTime

and makeTime (the latter is used if set to 'auto')

22

Defining the time step

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

% specify Nt and dt explicity

kgrid.setTime(Nt, dt);

% calculate Nt and dt (this is the same as 'auto')

kgrid.makeTime(medium.sound_speed);

% calculate Nt and dt specifying the CFL

kgrid.makeTime(medium.sound_speed, CFL);

% calculate Nt and dt specifying the CFL and end time

kgrid.makeTime(medium.sound_speed, CFL, t_end);

% calculate Nt and dt specifying the end time

kgrid.makeTime(medium.sound_speed, [], t_end);

• There are 5 medium properties that can be specified

• These can be specified as scalar values or matrices the

same size as the computational grid (except
alpha_power, which must be scalar)

• If BonA is not specified, linear equations are solved

• If alpha_coeff or alpha_power are not specified,

lossless equations are solved

23

Defining the medium properties

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

There are three types of source available in k-Wave

1. Initial pressure source – source.p0

– Initial value problem assuming the particle velocity is zero

(i.e., photoacoustics)

2. Time varying pressure source – source.p

– Time rate of the input of mass per unit volume

– Generates a monopole field

3. Time varying velocity source – source.ux

– Input of body forces per unit mass

– Generates a dipole field

24

Defining a source

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

• Need to define a source mask, and then either a single

time series for all points in the source, or a separate time

series for each point in the source mask

• Source mask is ordered column-wise (opposite to C++

which is row-wise), e.g.,

• In this case, the source would have 6 rows containing

the time series for each source point

25

Defining a source mask

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

0 1 0

1 0 1

1 0 1

0 1 0

0 3 0

1 0 5

2 0 6

0 4 0

mask index order

• The sensor structure defines what is recorded from the

simulation (e.g., pressure, velocity), and where it is

recorded

• The sensor mask can be defined in three ways:

1. As a binary matrix which specifies the grid points that record

the data, where the 1’s represent the grid points that form

part of the sensor

2. As the grid coordinates of two opposing corners of a line (in

1D), rectangle (in 2D), or cuboid (in 3D) of grid points that

record the data

3. As a set of Cartesian coordinates defined as an N x M

matrix, where N is the number of dimensions, and M the

number of sensor points

26

Defining a sensor mask

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

• By default, the acoustic pressure field is recorded and
passed directly to the output sensor_data

• Other parameters can be recorded by specifying
sensor.record = {'p', 'u', 'p_max‘, ...}

27

Defining the sensor record parameters

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

• The output is indexed differently depending on the type

of sensor mask used (Cartesian, binary, cuboid-corners)

• For a binary sensor mask, the output data is returned in

column-wise order, e.g.,

• The data is indexed as:
sensor_data(sensor_index, time_index)

• Note, the sensor points do not modify the wave field in

any way (they act as transparent observers), and the

response is omnidirectional

28

Output data

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

0 1 0

1 0 1

1 0 1

0 1 0

0 3 0

1 0 5

2 0 6

0 4 0

mask index order

• There are many additional optional input parameters to

control the behavior of k-Wave

• These are specified as 'Param', value pairs after the

main inputs

29

Optional input parameters

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

% save the output as a movie in mp4 format

kspaceFirstOrder2D(kgrid, medium, source, sensor, ...

'RecordMovie', true, 'MovieProfile', 'MPEG-4');

% turn off the display, and run in single precision

kspaceFirstOrder2D(kgrid, medium, source, sensor, ...

'PlotSim', false, 'DataCast', 'single');

• There are many additional functions included in the k-

Wave toolbox, including…

– Time Domain Wave Propagation in Fluid Media (1D, 2D, 3D, AS)

– Time Domain Wave Propagation in Elastic Media (2D, 3D)

– Time Domain Heat Diffusion (1D, 2D, 3D)

– Reference Solutions

– Geometry and Shape Creation

– Acoustic Absorption Coefficient Calculation and Conversion

– Grid and Matrix Utilities

– Filtering and Spectral Utilities

– Display and Visualisation

– Signal Creation and Processing

– HDF5 Utilities

– System Parameters and Utilities

– Photoacoustic Image Reconstruction

30

Other k-Wave functions

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox

