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Simulation accuracy

* For linear simulations in a homogeneous, lossless, fluid
medium, the numerical method used in k-Wave is exact

and unconditionally stable

« What about more complex scenarios?
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Simulation accuracy

There are several factors to consider:

Perfectly matched layer

Numerical dispersion in heterogeneous media
Accuracy of reflection and transmission coefficients
Source staircasing

Medium staircasing

Acoustic absorption

N o o~ w b oPE

Acoustic nonlinearity
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1. Perfectly matched layer

« The effectiveness of the PML depends on:
— PML size
— PML absorption
— Frequency
— Angle of incidence

« Can assess the PML by measuring the reflected and
transmitted waves

—/\
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Normal incidence

« At 3 PPW, signal is reduced by -100 dB (1e-5)
« At 4 PPW, signal is reduced by -120 dB (1e-6)

PML Size = 20, PML Alpha=2, CFL=0.3
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Time step

« Almost no dependence on time step for CFL < 0.5
 For CFL > 1, PML is ineffective

PML Size = 20, PML Alpha =2, PPW =3
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PML parameters

* The efficacy depends on the PML parameters, controlled
by 'PMLSize' and 'PMLAIpha'

» Defaults are 20 grid points in 1D/2D and 10 grid points in
3D, with a PMLA1pha value of 2

Reflection, PPW =4 Transmission, PPW =4
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PML parameters

The efficacy depends on the PML parameters, controlled
by 'PMLSize' and 'PMLAIpha'

Defaults are 20 grid points in 1D/2D and 10 grid points in
3D, with a PMLA1pha value of 2

Default parameters are typically ok
Increasing the PML thickness will improve performance
Significantly increasing PML absorption will not!
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Angle of incidence

 PML performance is similar across angles

PPW =3 PPW =4
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PML position

« By default, the PML is inside the domain specified by the
user

user-specified domain

J\

« Care must be taken to position sources and sensors
outside the PML

« The PML can also be placed outside by setting
'"PMLInside' 10 false

PML
PML
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2. Numerical dispersion

* Recall the k-space operator « = sinc (cskAt/2) IS used to
correct for numerical dispersion in the finite difference

time step

« This is applied in the Fourier domain, which means only
a single value for the sound speed can be used

* For a heterogeneous medium, the wave propagation will
only be dispersion-free in regions of the domain where
the local sound speed c¢(x) matches cret
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Reference sound speed

* Phase error in the propagation of a plane wave after 50
wavelengths for c, = 1500 m/s
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Choice of reference sound speed

o If cer > max(c(x)), then the simulation is unconditionally
stable, but the phase error can accumulate in regions of
the domain where cef > ¢(x)

« By default, k-Wave sets ¢t = max(c(x))

o |If cef <max(c(x)), the simulation is not unconditionally
stable, but the phase error will never be worse than the
leapfrog PSTD method (x — 1 as ¢ret — 0)

* For alinear and lossless simulation and c¢rer < max(c(x))
the stabllity criterion is given by

2 r
At < sin~ ! ( Cref )

Cref kmax maX(C(X) )
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Choice of reference sound speed

« The reference sound speed c.r is specified by
medlum.sound speed ref

« Can be set to a scalar value (in m/s), or 'max"' (the
default) , 'min', or 'mean'

« To minimise dispersion, a good choice is the sound
speed of the background medium
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3. Heterogeneous media

« Consider the propagation of a pulse through a step
change in material properties

* When the pulse crosses the interface, the pressure is
Influenced by the band-limited interpolant of the step
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3. Heterogeneous media

« The accuracy of the reflection and transmission
coefficients depends on:

1. The size of the impedance change
2. The number of points per wavelength (PPW)

3. The size of the time step / CFL
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Effect of points per wavelength

1o Ac=10%, A p=10%, CFL=0.3
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Effect of points per wavelength

Step change of 100% in sound speed and density
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Effect of time step / CFL

« There is also a weak dependence on the size of the time
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Effect of time step / CFL

« There is also a weak dependence on the size of the time
step / CFL
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Effect of Impedance change

 More PPW are needed for larger impedance changes

c2=0.5xc1, p2=0.5xp1, CFL=0.3
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Effect of Impedance change

* For impedance changes typically seen in biological
tissue (including bone), the reflection and transmission
coefficients are encoded accurately

PPW =4, CFL=0.3 «1073 PPW =8, CFL=10.3
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Sound speed vs density

« Sound speed change causes the transmission coefficient
to be underestimated

* Density change causes the transmission coefficient to be
overestimated
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Extreme impedance changes — Gold

« Water - Gold
(1500 m/s, 1000 kg/m?3) = (3240 m/s, 19300 kg/m?3)
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Extreme impedance changes — Air

« Water - Air
« (1500 m/s, 1000 kg/m?3) = (343 m/s, 1.225 kg/m?3)
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Extreme impedance changes — Air

« Water = Air

« (1500 m/s, 1000 kg/m?3) = (343 m/s, 10 x 1.225 kg/m?3)
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« Trick: using a lower density change can reduce the error
« (R=-0.999 - -0.994 and T =0.000560 - 0.00559 )
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Maximum supported frequency

* A heterogeneous medium will have a different maximum
supported frequency in different regions of the grid

! “l 2 f 0
fmax,l — N max,2 — IA 7

« This can lead to very strange effects!

il
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Comparison with finite differences

« These errors are not unique to the k-space
pseudospectral method or k-Wave
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10

Wil BUG

k-Wave Short Course - ISNA 2022 - Bradley Treeby and Ben Cox



30

4. Source staircasing

« Continuous surface must be represented on a discrete
Cartesian grid

e Leads to errors in the density and position of source
points

N

« Can be solved using off-grid sources (discussed earlier)
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5. Medium staircasing

« Medium staircasing arises for the same reason as
source staircasing

« Can be one of the largest sources of error for methods
based on fixed Cartesian meshes

« Example: scattering of a 3-cycle tone-burst by a 2D
cylinder created using makeDisc

— domain

absorbing |
layer — | ,

source /

\\ large element
scatterer recelver
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Medium staircasing example

« Cylinder contrast of ccy1 =2¢o and  pey1 = 2p0
 Reference simulation shown at 50 PPW

PPW =5
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Convergence

* Error converges as the number of PPW is increased

80
—— L2 Error
70 ——L  Error
o
P Error
max
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Source smoothing

« Smoothing the medium can reduce spurious reflections
from staircased edges

'Smooth', false 'Smooth', true
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« However, the impedance change is no longer sharp
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Source smoothing

« Smoothing the medium can reduce spurious reflections
from staircased edges

'Smooth', false 'Smooth', true
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« However, the impedance change is no longer sharp
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Source smoothing

« Cylinder contrast of ccy1 = 2¢p and  pey1 = 2p0
« Smoothed solution Is not accurate at low PPW

'Smooth', false 'Smooth', true
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6. Acoustic absorption

« The power law acoustic absorption term Lp IS given by

0 Y y+1l

___25_1 2 D)
L=ro (V7)) +n(=V)

« The fractional Laplacian terms can be easily calculated
In the Fourier domain using

FL9)"p) = K F {p)

* Which gives

apn—l—l
Lp”“sz_l{ky_2]-"{ o }}+nf—1{ky—1f{p”+1}}

* This still leaves 9p/0t to be discretised
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Acoustic absorption

« This can be solved using the substitution 9p/0t = —pyV - u

i oo L)
{3

 However, the velocity and density being added are at
different time points due to grid staggering

« This leads to numerical dispersion

* Note: the absorption term in kspaceSecondOrder IS
exact
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Convergence

« Accuracy of absorption and dispersion values for
0.1f1°,0.25f1> and0.5f11
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Restrictions

« The absorption Is specified by medium.alpha coeff
and medium.alpha power

« The implementation of the absorption term in the Fourier
domain means a1pha power must be scalar (a single

value used for the whole domain)

« Select a reference frequency and alpha power, then
recompute alpha coeff values

—_ Y—Yref
ao,new - ao ref ©
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/. Nonlinearity

« The convective nonlinearity in k-Wave is implemented
using spatial derivatives, and the material nonlinearity
doesn’t have derivatives, so no finite difference error

op mass
Ot =—poV-u—2pV-u conservation
2 B p?
_ 2 p pressure
P =% (p—|— 2A p Lp) density

 However, the k-space correction is not exact when
nonlinearity is included, so some error is introduced
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Convergence with CFL

CFL=0.3
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Convergence with CFL

* Reducing the time step increases the accuracy of the
harmonic amplitudes

0 0.1 0.2 0.3 0.4 0.5
CFL
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Spectral blocking

* For nonlinear simulations, the grid spacing must be
chosen to give at least 2 PPW at the highest harmonic at

which there is significant energy

5 compute dx and Nx based on x size and f max

ppw = 3;
dx = c0 min / (ppw * f max);
Nx = round(x size / dx);

« Otherwise, energy that would be transferred to higher
frequency harmonics is aliased to lower frequencies

« This is sometimes called spectral blocking, and causes a
distortion of the wave and build up of error
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Spectral blocking example hock parameter
/
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Spectral blocking example

 Increasing the shock parameter pushes energy into
frequencies not supported by the grid

* Once this happens, there is a rapid increase in the error

18

16

14 1

[%]

L Error

0 0.5 1 1.5 2 2.5 3

* Not an intrinsic problem — just increase grid size
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Real-world example of spectral blocking

Source properties

e 30 mm diameter

« 30 mm ROC

« 1 MHz CW source

e Source amplitudes from
0.1to 1.2 MPa

Pressure Field

W N -
o o o

Axial Position [mm]

D
o

Computational parameters
« Axisymmetric code
-20 -10 0 10 20

¢ Gl’ld Size: 3456 x 1372 Lateral Position [mm]
(100 harmonics)

« Memory usage: 1 GB
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o
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Axial Peak Pressure Time Series At Spatial Peak P
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Axial Peak Pressure Time Series At Spatial Peak P
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Axial Peak Pressure
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Axial Peak Pressure Time Series At Spatial Peak P
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Spectral blocking can be eliminated by increasing the grid size

(always run a convergence test)
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Summary

Factors affecting accuracy: Ax | A
1. Perfectly matched layer: v
2. Numerical dispersion in heterogeneous media v
3. Accuracy of reflection and transmission coefficients v/ ~
4. Source staircasing -
5. Medium staircasing v
6. Acoustic absorption vV | v
7. Acoustic nonlinearity v |V
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How can we trust simulation results aren’t
Influenced by numerical parameters?

!

Perform a convergence test!

!

Challenge to modellers:

Repeat your simulation with reduced Ax and At
Do you get the same answer?
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Problem sizes

63

« Many simulations involve very large domain sizes

driving signals \
-y
/4 !
i |
i
Il coupling
{ medium
H
H

HIFU transducer skin surface Hf

undamaged tissue

/ //‘—- S ld+iAn :::
S I P e 2 o
[ )
[| | -
\ tumour | /1’/
| )
4%
\/ /A1
1/ !( I
target organ \

(e.g., liver)

« 20cm=133 Aat1 MHz, 1333 A at 10 MHz
* In 3D, using 3 PPW, each matrix is 240 GB!
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Target systems

« There are now several optimised versions of k-Wave
written in C++

* These are replacements for kspaceFirstOrder3D
« Three target systems:

1. Desktop Computer 2. Graphics Processing 3. High Performance
Unit (GPU) Computing (HPC) Cluster
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Running the C++ codes

« MATLAB and C++ codes are linked by input and output
files stored to disk in HDF5 format

4 EF G

« This means MATLAB is not required to run the
simulation
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Running the C++ codes

Two options to run the C++ code:

1. Use kspaceFirstOrder3DC (C++/OpenMP) and
kspaceFirstOrder3DG (C++ / CUDA) to call the code

blindly (automatically save the input file, run the
simulation, and load the outputs)

2. Save the input file using the 'saveToDisk',
F'ilename option, then run the C++ code from the

command line (windows) or terminal (linux)

More detalls given in the k-Wave manual
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Assessing memory usage

 Memory can be calculated by

(134 A) NxNyNz + (7 + B) X Ny Nz
10243 /4
+ input 4 output

memory usage |GB] &

« Here A =10,8],
— 1if ¢o Is heterogeneous
— 41f po Is heterogeneous
— 1if B/A is given and heterogeneous
— 2 if absorbing and ¢y or ap are heterogeneous

« Here B = |0, 2], 0 if the medium is lossless, or 2 if the
medium is absorbing
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Assessing memory usage

« Example grid sizes and total memory usage:

- 1283 > 200 MB Desktop / GPU
- 2562 > 1.6GB Desktop / GPU
- 5123 > 13GB Desktop / GPU
— 10243 -> 100 GB Server
— 20483 -> 0.80TB Cluster
— 4096° - 6.4TB Cluster

« The number of time steps also increases as the grid size
Increases (e.g., Nt = 5 * Nx)
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Example of production simulation

* Nonlinear simulations performed using the Visible
Human Female Data Set and the open-source
AustinWoman segmentation (tiny.cc/AustinWwoman)

Inferior pole
of left kidney
(90 mm deep)

cartilage
kidney
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Example of production simulation

Time Domain Signal At Focus
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Experimental validation: Nonlinear
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Experimental validation: Bone phantoms

* Bone phantoms with realistic cortical properties

Overflow Inflow

L

Finished Vulcanised Finished
Araldite Phantom Rubber Mold Araldite Phantom

compressional speed 3008 2495
[m/s]

shear speed [m/s] 1562 1081

density [kg/m?] 1637 1180

absorption [dB/cm at 1 1.8 3.7
MHZz]
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Experimental validation: Bone phantoms

Araldite

VeroBlack

Normalised Peak Pressure [dB]

With known geometry and properties, measurement and
model agree quantitatively
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1 MHz, spherically focused transducer
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Differences:
amplitude 0.8%
position 0.6 mm
volume 11.6%

Differences:
amplitude 0.8%
position 0.9 mm
volume 2.1%
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Closing remarks

« k-Wave is a powerful tool and widely used, but not the
best tool for every job!

« We are just about to start work on k-Wave I
— Object oriented and extensible
— Differentiable models and deep learning
— Model coupling
— MATLAB front-end will also be compiled as a Python package

« Codes and slides available from:
http://www.k-wave.org/downloads/isna2022.zip
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